set-intersection-size-at-least-two


Submit solution

Points: 5
Time limit: 30.0s
Memory limit: 250M

Problem type
Allowed languages
Python

You are given a 2D integer array intervals where intervals[i] = [starti, endi] represents all the integers from starti to endi inclusively.

A containing set is an array nums where each interval from intervals has at least two integers in nums.

For example, if intervals = [[1,3], [3,7], [8,9]], then [1,2,4,7,8,9] and [2,3,4,8,9] are containing sets.

Return the minimum possible size of a containing set.

  Example 1:

Input: intervals = [[1,3],[3,7],[8,9]] Output: 5 Explanation: let nums = [2, 3, 4, 8, 9]. It can be shown that there cannot be any containing array of size 4.

Example 2:

Input: intervals = [[1,3],[1,4],[2,5],[3,5]] Output: 3 Explanation: let nums = [2, 3, 4]. It can be shown that there cannot be any containing array of size 2.

Example 3:

Input: intervals = [[1,2],[2,3],[2,4],[4,5]] Output: 5 Explanation: let nums = [1, 2, 3, 4, 5]. It can be shown that there cannot be any containing array of size 4.

  Constraints:

1 <= intervals.length <= 3000
intervals[i].length == 2
0 <= starti < endi <= 10⁸

Comments

There are no comments at the moment.