apps_142
A New Year party is not a New Year party without lemonade! As usual, you are expecting a lot of guests, and buying lemonade has already become a pleasant necessity.
Your favorite store sells lemonade in bottles of n different volumes at different costs. A single bottle of type i has volume 2^{i} - 1 liters and costs c_{i} roubles. The number of bottles of each type in the store can be considered infinite.
You want to buy at least L liters of lemonade. How many roubles do you have to spend?
-----Input-----
The first line contains two integers n and L (1 ≤ n ≤ 30; 1 ≤ L ≤ 10^9) — the number of types of bottles in the store and the required amount of lemonade in liters, respectively.
The second line contains n integers c_1, c_2, ..., c_{n} (1 ≤ c_{i} ≤ 10^9) — the costs of bottles of different types.
-----Output-----
Output a single integer — the smallest number of roubles you have to pay in order to buy at least L liters of lemonade.
-----Examples-----
Input 4 12 20 30 70 90
Output 150
Input 4 3 10000 1000 100 10
Output 10
Input 4 3 10 100 1000 10000
Output 30
Input 5 787787787 123456789 234567890 345678901 456789012 987654321
Output 44981600785557577
-----Note-----
In the first example you should buy one 8-liter bottle for 90 roubles and two 2-liter bottles for 30 roubles each. In total you'll get 12 liters of lemonade for just 150 roubles.
In the second example, even though you need only 3 liters, it's cheaper to buy a single 8-liter bottle for 10 roubles.
In the third example it's best to buy three 1-liter bottles for 10 roubles each, getting three liters for 30 roubles.
Comments