apps_183
Amr doesn't like Maths as he finds it really boring, so he usually sleeps in Maths lectures. But one day the teacher suspected that Amr is sleeping and asked him a question to make sure he wasn't.
First he gave Amr two positive integers n and k. Then he asked Amr, how many integer numbers x > 0 exist such that: Decimal representation of x (without leading zeroes) consists of exactly n digits; There exists some integer y > 0 such that: $y \operatorname{mod} k = 0$; decimal representation of y is a suffix of decimal representation of x.
As the answer to this question may be pretty huge the teacher asked Amr to output only its remainder modulo a number m.
Can you help Amr escape this embarrassing situation?
-----Input-----
Input consists of three integers n, k, m (1 ≤ n ≤ 1000, 1 ≤ k ≤ 100, 1 ≤ m ≤ 10^9).
-----Output-----
Print the required number modulo m.
-----Examples-----
Input 1 2 1000
Output 4 Input 2 2 1000
Output 45 Input 5 3 1103
Output 590
-----Note-----
A suffix of a string S is a non-empty string that can be obtained by removing some number (possibly, zero) of first characters from S.
Comments