apps_270
There is a cave consisting of N rooms and M one-directional passages. The rooms are numbered 1 through N. Takahashi is now in Room 1, and Room N has the exit. The i-th passage connects Room s_i and Room t_i (s_i < t_i) and can only be traversed in the direction from Room s_i to Room t_i. It is known that, for each room except Room N, there is at least one passage going from that room. Takahashi will escape from the cave. Each time he reaches a room (assume that he has reached Room 1 at the beginning), he will choose a passage uniformly at random from the ones going from that room and take that passage. Aoki, a friend of Takahashi's, can block one of the passages (or do nothing) before Takahashi leaves Room 1. However, it is not allowed to block a passage so that Takahashi is potentially unable to reach Room N. Let E be the expected number of passages Takahashi takes before he reaches Room N. Find the value of E when Aoki makes a choice that minimizes E.
-----Constraints-----
- 2 \leq N \leq 600
- N-1 \leq M \leq \frac{N(N-1)}{2}
- s_i < t_i
- If i != j, (s_i, t_i) \neq (s_j, t_j). (Added 21:23 JST)
- For every v = 1, 2, ..., N-1, there exists i such that v = s_i.
-----Input----- Input is given from Standard Input in the following format: N M s_1 t_1 : s_M t_M
-----Output----- Print the value of E when Aoki makes a choice that minimizes E. Your output will be judged as correct when the absolute or relative error from the judge's output is at most 10^{-6}.
-----Sample Input----- 4 6 1 4 2 3 1 3 1 2 3 4 2 4
-----Sample Output----- 1.5000000000
If Aoki blocks the passage from Room 1 to Room 2, Takahashi will go along the path 1 → 3 → 4 with probability \frac{1}{2} and 1 → 4 with probability \frac{1}{2}. E = 1.5 here, and this is the minimum possible value of E.
Comments