apps_465
Given three numbers $n, a, b$. You need to find an adjacency matrix of such an undirected graph that the number of components in it is equal to $a$, and the number of components in its complement is $b$. The matrix must be symmetric, and all digits on the main diagonal must be zeroes.
In an undirected graph loops (edges from a vertex to itself) are not allowed. It can be at most one edge between a pair of vertices.
The adjacency matrix of an undirected graph is a square matrix of size $n$ consisting only of "0" and "1", where $n$ is the number of vertices of the graph and the $i$-th row and the $i$-th column correspond to the $i$-th vertex of the graph. The cell $(i,j)$ of the adjacency matrix contains $1$ if and only if the $i$-th and $j$-th vertices in the graph are connected by an edge.
A connected component is a set of vertices $X$ such that for every two vertices from this set there exists at least one path in the graph connecting this pair of vertices, but adding any other vertex to $X$ violates this rule.
The complement or inverse of a graph $G$ is a graph $H$ on the same vertices such that two distinct vertices of $H$ are adjacent if and only if they are not adjacent in $G$.
-----Input-----
In a single line, three numbers are given $n, a, b \,(1 \le n \le 1000, 1 \le a, b \le n)$: is the number of vertexes of the graph, the required number of connectivity components in it, and the required amount of the connectivity component in it's complement.
-----Output-----
If there is no graph that satisfies these constraints on a single line, print "NO" (without quotes).
Otherwise, on the first line, print "YES"(without quotes). In each of the next $n$ lines, output $n$ digits such that $j$-th digit of $i$-th line must be $1$ if and only if there is an edge between vertices $i$ and $j$ in $G$ (and $0$ otherwise). Note that the matrix must be symmetric, and all digits on the main diagonal must be zeroes.
If there are several matrices that satisfy the conditions — output any of them.
-----Examples-----
Input 3 1 2
Output YES 001 001 110
Input 3 3 3
Output NO
Comments