apps_502
Arpa is taking a geometry exam. Here is the last problem of the exam.
You are given three points a, b, c.
Find a point and an angle such that if we rotate the page around the point by the angle, the new position of a is the same as the old position of b, and the new position of b is the same as the old position of c.
Arpa is doubting if the problem has a solution or not (i.e. if there exists a point and an angle satisfying the condition). Help Arpa determine if the question has a solution or not.
-----Input-----
The only line contains six integers a_{x}, a_{y}, b_{x}, b_{y}, c_{x}, c_{y} (|a_{x}|, |a_{y}|, |b_{x}|, |b_{y}|, |c_{x}|, |c_{y}| ≤ 10^9). It's guaranteed that the points are distinct.
-----Output-----
Print "Yes" if the problem has a solution, "No" otherwise.
You can print each letter in any case (upper or lower).
-----Examples-----
Input 0 1 1 1 1 0
Output Yes
Input 1 1 0 0 1000 1000
Output No
-----Note-----
In the first sample test, rotate the page around (0.5, 0.5) by $90^{\circ}$.
In the second sample test, you can't find any solution.
Comments