apps_706
Submit solution
Python
Points:
3
Time limit:
30.0s
Memory limit:
250M
Problem type
Allowed languages
Consider a linear function f(x) = Ax + B. Let's define g^{(0)}(x) = x and g^{(}n)(x) = f(g^{(}n - 1)(x)) for n > 0. For the given integer values A, B, n and x find the value of g^{(}n)(x) modulo 10^9 + 7.
-----Input-----
The only line contains four integers A, B, n and x (1 ≤ A, B, x ≤ 10^9, 1 ≤ n ≤ 10^18) — the parameters from the problem statement.
Note that the given value n can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
-----Output-----
Print the only integer s — the value g^{(}n)(x) modulo 10^9 + 7.
-----Examples-----
Input 3 4 1 1
Output 7
Input 3 4 2 1
Output 25
Input 3 4 3 1
Output 79
Comments