apps_708


Submit solution

Points: 3
Time limit: 30.0s
Memory limit: 250M

Problem type
Allowed languages
Python

Bearland has n cities, numbered 1 through n. Cities are connected via bidirectional roads. Each road connects two distinct cities. No two roads connect the same pair of cities.

Bear Limak was once in a city a and he wanted to go to a city b. There was no direct connection so he decided to take a long walk, visiting each city exactly once. Formally: There is no road between a and b. There exists a sequence (path) of n distinct cities v_1, v_2, ..., v_{n} that v_1 = a, v_{n} = b and there is a road between v_{i} and v_{i} + 1 for $i \in {1,2, \ldots, n - 1 }$.

On the other day, the similar thing happened. Limak wanted to travel between a city c and a city d. There is no road between them but there exists a sequence of n distinct cities u_1, u_2, ..., u_{n} that u_1 = c, u_{n} = d and there is a road between u_{i} and u_{i} + 1 for $i \in {1,2, \ldots, n - 1 }$.

Also, Limak thinks that there are at most k roads in Bearland. He wonders whether he remembers everything correctly.

Given n, k and four distinct cities a, b, c, d, can you find possible paths (v_1, ..., v_{n}) and (u_1, ..., u_{n}) to satisfy all the given conditions? Find any solution or print -1 if it's impossible.

-----Input-----

The first line of the input contains two integers n and k (4 ≤ n ≤ 1000, n - 1 ≤ k ≤ 2n - 2) — the number of cities and the maximum allowed number of roads, respectively.

The second line contains four distinct integers a, b, c and d (1 ≤ a, b, c, d ≤ n).

-----Output-----

Print -1 if it's impossible to satisfy all the given conditions. Otherwise, print two lines with paths descriptions. The first of these two lines should contain n distinct integers v_1, v_2, ..., v_{n} where v_1 = a and v_{n} = b. The second line should contain n distinct integers u_1, u_2, ..., u_{n} where u_1 = c and u_{n} = d.

Two paths generate at most 2n - 2 roads: (v_1, v_2), (v_2, v_3), ..., (v_{n} - 1, v_{n}), (u_1, u_2), (u_2, u_3), ..., (u_{n} - 1, u_{n}). Your answer will be considered wrong if contains more than k distinct roads or any other condition breaks. Note that (x, y) and (y, x) are the same road.

-----Examples-----

Input 7 11 2 4 7 3

Output 2 7 1 3 6 5 4 7 1 5 4 6 2 3

Input 1000 999 10 20 30 40

Output -1

-----Note-----

In the first sample test, there should be 7 cities and at most 11 roads. The provided sample solution generates 10 roads, as in the drawing. You can also see a simple path of length n between 2 and 4, and a path between 7 and 3.

[Image]


Comments

There are no comments at the moment.