apps_854
XXI Berland Annual Fair is coming really soon! Traditionally fair consists of $n$ booths, arranged in a circle. The booths are numbered $1$ through $n$ clockwise with $n$ being adjacent to $1$. The $i$-th booths sells some candies for the price of $a_i$ burles per item. Each booth has an unlimited supply of candies.
Polycarp has decided to spend at most $T$ burles at the fair. However, he has some plan in mind for his path across the booths: at first, he visits booth number $1$; if he has enough burles to buy exactly one candy from the current booth, then he buys it immediately; then he proceeds to the next booth in the clockwise order (regardless of if he bought a candy or not).
Polycarp's money is finite, thus the process will end once he can no longer buy candy at any booth.
Calculate the number of candies Polycarp will buy.
-----Input-----
The first line contains two integers $n$ and $T$ ($1 \le n \le 2 \cdot 10^5$, $1 \le T \le 10^{18}$) — the number of booths at the fair and the initial amount of burles Polycarp has.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the price of the single candy at booth number $i$.
-----Output-----
Print a single integer — the total number of candies Polycarp will buy.
-----Examples-----
Input 3 38 5 2 5
Output 10
Input 5 21 2 4 100 2 6
Output 6
-----Note-----
Let's consider the first example. Here are Polycarp's moves until he runs out of money: Booth $1$, buys candy for $5$, $T = 33$; Booth $2$, buys candy for $2$, $T = 31$; Booth $3$, buys candy for $5$, $T = 26$; Booth $1$, buys candy for $5$, $T = 21$; Booth $2$, buys candy for $2$, $T = 19$; Booth $3$, buys candy for $5$, $T = 14$; Booth $1$, buys candy for $5$, $T = 9$; Booth $2$, buys candy for $2$, $T = 7$; Booth $3$, buys candy for $5$, $T = 2$; Booth $1$, buys no candy, not enough money; Booth $2$, buys candy for $2$, $T = 0$.
No candy can be bought later. The total number of candies bought is $10$.
In the second example he has $1$ burle left at the end of his path, no candy can be bought with this amount.
Comments