apps_963
There are N cells arranged in a row, numbered 1, 2, \ldots, N from left to right. Tak lives in these cells and is currently on Cell 1. He is trying to reach Cell N by using the procedure described below. You are given an integer K that is less than or equal to 10, and K non-intersecting segments [L_1, R_1], [L_2, R_2], \ldots, [L_K, R_K]. Let S be the union of these K segments. Here, the segment [l, r] denotes the set consisting of all integers i that satisfy l \leq i \leq r.
- When you are on Cell i, pick an integer d from S and move to Cell i + d. You cannot move out of the cells. To help Tak, find the number of ways to go to Cell N, modulo 998244353.
-----Constraints-----
- 2 \leq N \leq 2 \times 10^5
- 1 \leq K \leq \min(N, 10)
- 1 \leq L_i \leq R_i \leq N
- [L_i, R_i] and [L_j, R_j] do not intersect (i \neq j)
- All values in input are integers.
-----Input----- Input is given from Standard Input in the following format: N K L_1 R_1 L_2 R_2 : L_K R_K
-----Output----- Print the number of ways for Tak to go from Cell 1 to Cell N, modulo 998244353.
-----Sample Input----- 5 2 1 1 3 4
-----Sample Output----- 4
The set S is the union of the segment [1, 1] and the segment [3, 4], therefore S = { 1, 3, 4 } holds. There are 4 possible ways to get to Cell 5:
- 1 \to 2 \to 3 \to 4 \to 5,
- 1 \to 2 \to 5,
- 1 \to 4 \to 5 and
- 1 \to 5.
Comments