apps_977


Submit solution

Points: 3
Time limit: 30.0s
Memory limit: 250M

Problem type
Allowed languages
Python

This is the easy version of the problem. The difference between versions is the constraints on $n$ and $a_i$. You can make hacks only if all versions of the problem are solved.

First, Aoi came up with the following idea for the competitive programming problem:

Yuzu is a girl who collecting candies. Originally, she has $x$ candies. There are also $n$ enemies numbered with integers from $1$ to $n$. Enemy $i$ has $a_i$ candies.

Yuzu is going to determine a permutation $P$. A permutation is an array consisting of $n$ distinct integers from $1$ to $n$ in arbitrary order. For example, ${2,3,1,5,4}$ is a permutation, but ${1,2,2}$ is not a permutation ($2$ appears twice in the array) and ${1,3,4}$ is also not a permutation (because $n=3$ but there is the number $4$ in the array).

After that, she will do $n$ duels with the enemies with the following rules: If Yuzu has equal or more number of candies than enemy $P_i$, she wins the duel and gets $1$ candy. Otherwise, she loses the duel and gets nothing. The candy which Yuzu gets will be used in the next duels.

Yuzu wants to win all duels. How many valid permutations $P$ exist?

This problem was easy and wasn't interesting for Akari, who is a friend of Aoi. And Akari made the following problem from the above idea:

Let's define $f(x)$ as the number of valid permutations for the integer $x$.

You are given $n$, $a$ and a prime number $p \le n$. Let's call a positive integer $x$ good, if the value $f(x)$ is not divisible by $p$. Find all good integers $x$.

Your task is to solve this problem made by Akari.

-----Input-----

The first line contains two integers $n$, $p$ $(2 \le p \le n \le 2000)$. It is guaranteed, that the number $p$ is prime (it has exactly two divisors $1$ and $p$).

The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ $(1 \le a_i \le 2000)$.

-----Output-----

In the first line, print the number of good integers $x$.

In the second line, output all good integers $x$ in the ascending order.

It is guaranteed that the number of good integers $x$ does not exceed $10^5$.

-----Examples-----

Input 3 2 3 4 5

Output 1 3

Input 4 3 2 3 5 6

Output 2 3 4

Input 4 3 9 1 1 1

Output 0

-----Note-----

In the first test, $p=2$. If $x \le 2$, there are no valid permutations for Yuzu. So $f(x)=0$ for all $x \le 2$. The number $0$ is divisible by $2$, so all integers $x \leq 2$ are not good. If $x = 3$, ${1,2,3}$ is the only valid permutation for Yuzu. So $f(3)=1$, so the number $3$ is good. If $x = 4$, ${1,2,3} , {1,3,2} , {2,1,3} , {2,3,1}$ are all valid permutations for Yuzu. So $f(4)=4$, so the number $4$ is not good. If $x \ge 5$, all $6$ permutations are valid for Yuzu. So $f(x)=6$ for all $x \ge 5$, so all integers $x \ge 5$ are not good.

So, the only good number is $3$.

In the third test, for all positive integers $x$ the value $f(x)$ is divisible by $p = 3$.


Comments

There are no comments at the moment.